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Sound propagation in a dilute bubble-liquid mixture is studied by means of the 
Kramers-Kronig relationships, which relate the real and imaginary parts of the 
general susceptibility of a linear medium. These relationships are adopted for the 
case of acoustic waves, where they become coupled integral equations. A simple but 
approximate procedure is used to obtain from these equations the phase speed of 
sound waves for the case when the attenuation coefficient is independently known. 
The procedure can be used to obtain the speed of propagation of sound waves in 
acoustic media having internal dissipation, but is here applied only to fluids 
containing radially pulsating bubbles. Approximate results for the speed of 
propagation and for the attenuation per wavelength are obtained for this case on the 
basis of a first-order estimate for the attenuation coefficient. These results are the 
same as those derived previously on the basis of model equations for bubbly liquids. 
They therefore provide additional support for those equations, while indicating some 
of their limitations. 

1. Introduction 
Sound propagation in bubbly liquids has been given considerable attention in the 

past as it plays a significant role in a variety of situations of interest. One reason that 
this area of research continues to  be active is that bubbly clouds resulting from 
breaking waves in the ocean (Thorpe 1982) are believed to affect the propagation of 
sound waves used in underwater acoustic experiments. 

The purpose of this work is to study the phase speed of sound waves in a bubbly 
medium without stipulating, a priori, dynamical models for the medium. The 
approach we use is based on the Kramers-Kronig (K-K) relationships. These relate 
the real and imaginary parts of the general susceptibility of a linear system, a 
quantity which connects the generalized displacement in dissipative systems to the 
generalized force applied to them (see, for example, Kittel 1958 ; Landau & Lifshitz 
1958; Woods 1975; Pippard 1978; Beltzer 1988). As pointed out by Pippard, the 
K-K equations express, for these systems, a general truth that is independent of 
specific models. They are, therefore, ideal to test the suitability of given models for 
the response of a linear, dissipative system. 

Several works exist where the K-K equations are applied in acoustic situations. 
These include those of O’Donnell, Jaynes & Miller (1981), who applied them to 
ultrasonic attenuation and phase velocity in systems which do not exhibit rapid 
frequency variations, that of Morfey & Howell (1980) who used their known form of 
a system containing a single degree of freedom to consider the effects of humidity on 
propagation, and those of Beltzer and Brauner (Brauner & Beltzer 1985; Beltzer & 
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Brauner 1987) who have applied them to the study of sound waves in composites. 
However, there seems to be no systematic application of those equations to the 
general problem of attenuation and dispersion of sound waves in fluids. In  view of 
this, we first put the basic K-K equations in the acoustic context, and then introduce 
an approximate procedure to solve them for the phase speed assuming that the 
attenuation can be calculated independently, as is often the case in acoustics. 

The procedure is then applied to a dilute suspension of equal-sized bubbles in a 
liquid, in the case when the bubbles pulsate radially under the effects of a plane 
sound wave. We show that the K-K approach yields results which reduce to those 
first derived by Kennard (1943), for the special case when the dissipation is due to 
acoustic radiation alone, and which a.gree with those results currently in use that 
were derived from more precise equations for a bubbly mixture (van Wijngaarden 
1968, 1972; Plesset & Prosperetti 1577; Caflisch et al. 1985; Prosperetti 1986, 1987). 
This is not surprising, as considerable experimental data exist which appear to support 
the basic conclusions derived from these model equations away from resonance, 
particularly when the effects of bubble size distribution and frequency-dependence 
damping are taken into account as done by Commander & Prosperetti (1989). 
Nevertheless, the K-K approach also provides support to these models away from 
resonance, and shows that near resonance they are only approximately correct. Of 
course, nonlinear effects near resonance are probably more important. 

2. The Kramers-Kronig equations in acoustics 
The Kramers-Kronig equations are based on causality arguments regarding the 

response of a system to a given input. These arguments require that the generalized 
susceptibility of the system be a regular function of the frequency in the upper half 
of the complex domain (see, for example, Pippard 1978). The equations do not 
require any specific information about the system, other than assuming it to  behave 
linearly, and connect, by means of some integral relations, the real and imaginary 
parts of the generalized susceptibility. Therefore, if either the real or the imaginary 
part of this generalized susceptibility is known, the unknown part may be obtained 
through integration in the frequency domain. Thus, for example, if one determines 
the real part through some experiment, the imaginary part can be obtained from the 
K-K equations, provided, of course, that the measurements cover those portions of 
the frequency range where the largest’ contributions to the integrals occur. 

The generalized susceptibility may be defined as follows : Let the system be under 
the effect of a generalized force F .  Then the generalized displacement of the system 
X is given by X = xF, where x represents the general susceptibility, a quantity which 
may be complex. Thus, x = x’ + ix”. If o is used to represent the circular frequency, 
then the K-K equations may be expressed as 

where the principal part of the improper integrals is implied. Thus, given either 2’ or 
x“, one of these equations can be used to obtain the other quantity. 

Let us now put these relationships in a manner suitable for the calculation of 
acoustic attenuation and dispersion. First, we identify the acoustic quantity 
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corresponding to the generalized susceptibility. An obvious choice is the acoustic 
admittance ulp‘,  where u is the complex velocity of the system and p’ the acoustic 
pressure. This choice, however, requires an expression relating these two quantities 
and this is only available from model equations for the dynamic response of this 
system (see Appendix A). A less restrictive approach is to use the change of volume, 
or equivalently, the acoustic density p’, as the generalized displacement, and the 
applied acoustic pressure p’ as the generalized force. Thus, p’ = xp’. However, we 
know from elementary theory that the acoustic pressure and density are related, in 
the linear approximation, by p‘ = p’c2 where c2 is the sound speed for the medium 
under consideration. Thus, 

131 
1 - = x’ + if .  

C2 

This simply states that, in general, the quantity c defined by (3) may be complex, 
implying, of course, that a phase lag, brought out by dissipation, exists between 
pressure and density. Instead of working with a complex speed, it is more convenient 
to work with a complex wavenumber k defined by 

w 
C 

k(w)  = - = k, + ikz, (4) 

where k, and k, are real. Equating the real and imaginary parts of k2 and of x we 
obtain 

We now put these quantities in terms of attenuation and dispersion coefficients. 
For propagating monochromatic sound waves these are defined as follows. Consider 
a plane monochromatic wave propagating along the x-axis, and assume that its 
amplitude a t  some point xo is A. At points x > xo, the acoustic variables are 
proportional to A exp { - a( x - xo) + i[k,(x - zo) - wt]},  where a is the amplitude 
attenuation coefficient. Thus, 

Similarly, the phase velocity of the waves is 
a ( w )  = k,. (7 )  

w 
c ( w )  = -, 

kl 

where for convenience we have used the same symbol as in (3) to  represent a real, 
frequency-dependent speed. In terms of a and c ,  x‘ and 2’’ are given by 

where we have introduced a non-dimensional attenuation coefficient 

Ce a = a@)--, 
w 
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and where cf denotes the phase speed in the fluid without dissipative mechanisms. 
Substituting these results in the original K-K equations, we obtain 

and 

where we have assumed that & is zero at infinite frequencies. 
It is also convenient to introduce the equilibrium, or zero-frequency speed of 

propagation, as this quantity can usually be obtained from general thermodynamic 
considerations. Thus, for w = 0, (12) gives 

where we have set a(0) = 0. Substituting cf" /c*(00)  from (13) into ( 1  1 )  yields 

As they stand, (13) and (15) form a pair of coupled integral equations for c(w)  and 
ti, respectively, and are not of much use in the acoustic case, even if one of these two 
quantities is known independently. Several methods exist that  can be used to obtain 
approximate solutions from them. For our purposes, it is sufficient to make suitable 
assumpt,ions about our unknowns when they appear under the integral sign. Thus, 
if we assume that the attenuation is very small, the changes of speed of propagation 
are then also small, and we can put c , /c (Q)  equal t o  unity inside the integral in (15), 
and a2 = 0 inside the integral in (13). Therefore, these equations give 

Clearly, if either cf/c(w) or a is known, the second quantity can be obtained directly 
by integration of either (16) or (17).  We consider here the case when a first-order 
approximation for a, say a,,, has been independently established, for example 
through experimental measurements. Then, the integral on the right-hand side of 
(16) can be evaluated so that (16) may be written as 

where 

Of course, if the attenuation is very small throughout the frequency range, we may 
also neglect 2 in the left-hand side of (18),  thus obtaining a first-order approximation 
for the speed ratio. When the attenua,tion is not small throughout, its square must 
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be retained in (18). The second of the K-K equations can then be used to complete 
the system. Thus, substituting (18) into (13) yields 

where 

Equations (19) and (20) are two algebraic equations for the two unknowns, B and 
c , /c (w) ,  which can be solved in terms of the known quantities X and Y ,  giving 

and 

(22) 

(23) 

powerful in the acoustic case Although approximate, this procedure is specially - 
because the attenuation coefficient can often be independently calculated by using 
simple energy arguments in conjunction with the non-attenuated results predicted 
by acoustic theory. In the remaining sections of this work, we apply the method to 
study the propagation of sound waves in a fluid containing a dilute suspension of 
radially pulsating bubbles. The procedure, however, may be used for any acoustic 
situation where an attenuation coefficient is known. 

3. Propagation in a dilute suspension of bubbles in a liquid 
We consider the propagation of a monochromatic sound wave in a gas containing 

n spherical bubbles per unit volume, all of the same radius R, and filled with a gas 
of density pg, which can pulsate radially in response to the acoustic waves. Because 
this radial motion involves dissipation, some energy is removed from the waves, so 
that they are attenuated as they travel in the bubbly liquid. This results in a non- 
zero amplitude attenuation coefficient which can be estimated from (Landau & 
Lifshitz 1959) 

where ilost is the rate at which energy is dissipated per bubble, cf is the ambient speed 
of sound in the fluid without bubbles, and (E , )  is the average acoustic energy per 
unit volume, computed by ignoring any dissipation effect which might exist. Thus, 
in the absence of these effects, the acoustic wave is described by a potential given by 
$ = A exp [i(k, x - w t ) ] ,  where A is real, and k, = w/cf. This potential gives an average 
energy density equal to ( E , )  = $pf k:A2. Equation (24) assumes that the total 
dissipation rate is simply the sum of the rates due to  each bubble; it is thus limited 
to dilute suspensions. 

It remains to compute dlOst. This quantity can be computed by determining the 
rate at which the acoustic field must do work on the bubble to maintain its radial 
oscillations. Thus, if the radial velocity of points on the sphere surface is U,, and the 
radial force exerted by the acoustic field is Fa, we have (L , , ,J  = (Fa U,>. For bubbles 
small compared with the acoustic wavelength, the radial force is simply equal to the 
acoustic pressure evaluated at the mean location of the bubble's surface, times the 
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surface area of the bubble. The pressure is simply p' = iprq5, with $ as given above. 
Evaluating the pressure a t  x = 0, where the bubble is located, we have 

Fa = 47ch!i imp, A exp ( - iwt). 

Similarly, the bubble's velocity is 
02A e-iid u 

b -  R, wi-w2-2i,8w' 

where w, is the resonant frequency of a bubble, as given by Minnaert's formula 
(Minnaert 1933) 

(26) 
c 

wo = (3p,/p,)i = 701, 
RO 

and where /3 is the bubble's damping coefficient, which includes all dissipative effects. 
That is, /3 is assumed to contain contributions from all dissipative processes, such as 
viscous and thermal effects, acoustic radiation, etc. For the purposes of this work we 
consider ,8 as a given constant, although each of its known separate contributions 
depends on frequency (Devin 1959; Eller 1970; Prosperetti 1977). In (26), we have 
introduced a timescale, 70, which may be regarded as the relaxation time for the 
radial pulsations. 

Using these results for U, and Fa, we obtain 

We now substitute these results into our working equation for tc, and find 

where b = 2 ,h0  is a non-dimensional damping coefficient, C, is the volume 
concentration of the 

In (28) we have put 

bubbles for dilute suspensions, given by 

C, = txnli;. 

This quantity gives the ratio of the isentropic compressibility of the gas in the 
bubbles to that of the fluid around them. For an air-water mixture, N2 is larger than 
1.6 x lo4. Therefore, the quantity C U P  is not negligible, even for very small 
concentrations. Further, the non-dimensional damping constant b is usually small. 
Thus, unless the volume fraction is very small, the above results predicts attenuation 
rates a t  resonance which are not generally small. 

We now use this attenuation estimate in (16) to obtain 

For a dilute suspension, the first term in the right-hand side is given by 

e2 f- 
ez(()) - 1 + C v P .  
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FIGURE 1. Attenuation 6, and speed ratio c * ( o ) / c ~  for C, = and b = 0.1 : +, c:/c2((w); ., ti. 

Next, we assume that b is a constant, so that we can write 

where dx m 

[(l - x ~ ) ~ +  ( b ~ ) ' ]  ( x - w ~ ~ ) '  

This integral is evaluated in Appendix B, for small b, where it is shown that 

1 I = -  
b w70 [(l - w ~ T ~ ) ~ + ( ~ u T ~ ) ~ ] '  

1 - ~ ' 7 :  - b2 

Substituting this into (33) we find 

(34) 

(35) 

The right-hand side of this equation gives the value of the quantity X ( w )  defined in 
(18). For Y ( w )  we have, on using the above equation as well as (19), 

1 -x2 dx 
Y(w)  = --C,W- 

(1 - 2)' + (bx)2  X - U W ~ ~  ' 

This yields, upon integration, 
b w O  

Y(w)  = C U P  
(1 - ~ ' 7 : ) ~  + (bo70)2 

(37) 

This completes the solution ; the K-K values for the attenuation and dispersion are 
given by (22) and (231, with the quantities X and Y as given by (36) and (381, and 
figure 1 shows these results for C, = and b = 0.1. Thus, in addition to providing 
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+, equation (22) with (36) and (38). 
FIGURE 3. Inverse speed ratio c:/c2(cw) for C, = and b = 0.1 : ., equation (A 3);  

a result for the speed of propagation in the bubbly liquid, the K-K equations result 
in an attenuation coefficient which differs, in the region near resonance, from the 
acoustic estimate given by (28), as shown in figure 2.  Similarly, figure 3 compares our 
more complete result for the speed ratio, given by (22) together with (36) and (38), 
with that obtained from (18) by neglecting 2 on the left-hand side of that equation. 
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Thus, except near resonance, the two sets of results are equivalent. Near resonance, 
however, the simpler equation for the speed ratio is incorrect, as i t  predicts negative 
values for the speed ratio in a band of frequencies around ono = 1,  whose width 
depends on C,  and b. Incidentally, this incorrect result corresponds to that given by 
equation (A 3), which is derived in Appendix A from a simpler K-K system. 

We now compare our results to those previously known. First, we note that they 
are basically the same result as those presented some time ago by Kennard (1943), 
except that the dissipation mechanism considered by him was due to acoustic 
radiation alone, that  is, with bur0 = (l/3/nr) (wT,,)~. To compare our solution to  other, 
more recent, theories we first write our results as 

1 
1 - w 2 r i  - ibwO ' (2)E= l + C , P  (39) 

This result is equal to that derived by some investigators on the basis of a 
compressibility model for the bubbly liquid (see, for example, Meyer & Skudryzyk 
1953; Fox, Curley & Larson 1955; Silberman 1957; Clay & Medwin 1977). It is also 
basically the same result as that derived by Wijngaarden (1972), Drumheller & 
Bedford (1979), Caflisch et al. (1985), and Prosperetti (1986, 1987), among others, on 
the basis of model equations for the fluid dynamic behaviour of a bubbly mixture. 
Therefore, the K-K approach, which does not rely on specific models lends some 
support to them, a t  least in the case of dilute suspensions of bubbles in liquids. 

However, the agreement between our results and those currently in use shows that 
both are only approximate. One reason is that our final results are only an 
approximation to the K-K equations, at least in the region near resonance, where the 
attenuation and dispersion vary considerably. A second limitation relates to  the non- 
dimensional damping coefficient b = 2PrO, which was taken to be a constant in our 
formulation. As pointed out earlier, however, every damping mechanism is known to 
depend on frequency, but, provided that the variations with frequency of /3 are not 
too abrupt, a frequency-dependent value of 2prO for b will not modify the final 
results. This is shown by our earlier discussion of the damping coefficient due to 
radiation. There we substituted (1/3/N) ( w T ~ ) ~  for b and obtained the correct result 
due to Kennard, even though this value of b varies with frequency. The reason that 
enabled us to  do this simple substitution was, of course, the sharp peak near oro = 
1 in the integrand in (34), which occurs when b 4 1.  In  such cases, the variations of 
b with frequency are of no consequence in determining the value of that integral, and 
therefore the value of cf/c(u). Only the value of b a t  wr0 = 1 is then relevant. For 
larger values of b, of course, the situation changes, and we can no longer merely 
substitute in the final results the values found for b in damping studies. Rather, one 
must then integrate' the K-K relationships using the actual dependence of p. 

Part of this work was performed in the Acoustics System Branch of the Naval 
Research Laboratory. I am grateful to  Drs Erskine and Pitre of that  Branch for their 
interest in it. I am also grateful to the referees for their valuable comments. 
Appendix A, dealing with a simpler K-K system, is based on a suggestion by one of 
the referees. 

Appendix A. Sound waves in fluids with small dissipation 
We consider here the propagation of plane waves in fluids having small amounts 

of internal dissipation. Examples could include pure fluids with internal degrees of 
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freedom, as well as dilute particle-fluid mixtures. As we will see, the results obtained 
could also be applied to bubbly liquids away from resonance. Now, when dissipation 
is small, we may, in the acoustic case where all motions have a small amplitude, write 
the momentum-conservation equation for the medium under consideration as 
p(au/at) +ap/ax x 0. It is of course assumed that p, u and p can be suitably defined. 
Now, for plane monochromatic waves, this gives u/p' = k/wp. Putting k = k,+ia, 
this relationship defines the general susceptibility as 

x = ( l /p)( l /c(w)+ia) .  

Substituting this into (1) and (2) yields the considerably simpler K-K system 

and 

For small attenuation throughout the frequency range, these equations provide valid 
and useful approximations to the K-K equations, as may be seen by direct 
comparison with (16). In  the case of strong dissipation, as with resonant bubbles in 
a liquid, they do not give accurate results in the region near resonance. Thus, in that 
instance, these equations give 

For some values of C,  and b this predicts negative values of the speed ratio. 

Appendix B. Evaluation of integral in equation (34) 
We consider the integral (34) in the complex plane z = x+iy. For the contour of 

integration, we take the real axis with a semicircular indentation of small radius 
around wO, and a semicircle of large radius connecting, in the limit as the radius goes 
to infinity, x = + co with x = - co. The integral may be written as follows: 

I = i Res {2~1(2,1) + 2 d z u 2 )  +g(w70) ) ,  (B 1) 

where 
1 - - 1 

[ ( I  - Z 2 ) 2 +  (bz)'] ( Z - " 7 0 )  (Z-Zul )  (Z-Zu2) (2-211) (2-212) (2- W 7 0 ) '  
d z )  = 

Here zul and zU2 are the poles of g(z) in the upper plane, zll and z12 are those in the 
lower plane. These quantities are given by 

zul = (1 - b 2 / 2  + ib( 1 - b2/4)9+ ; zu2 = (1 - b2/2 - i Q 1 -  b2/4)$4. 

In  addition, we have, zll = -zU1 and z12 = -zu2. Several relationships exist between 
these quantities which enable us to evaluate (B I ) .  Thus, 

zul zu2 = 1 ; zul ZU2 = - 1 ; Z12 ZU2 = - Zi2 ; 2,' - Zll = zul - Z12. 

These give, after some algebra, 
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This result is still exact. To reduce it further, we take advantage of the assumed 
smallness of b to expand zul and zu2, and obtain zu1+zUz = ib+O(b3) .  Thus, 

{ (07~ - ib) [ (1 - 0'7;) - i b w ~ ~ ]  + ibj R l b  Ri = 
(1 - 0'7~)' + (b07,)~ 

from which, (35) follows. 
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